Abstract

A new class of extragradient-type methods is introduced for solving an equilibrium problem in a real Hilbert space without any monotonicity assumption on the equilibrium function. The strategy is to replace the second projection step in the classical extragradient method by a projection onto shrinking convex subsets of the feasible set. Furthermore, to ensure a sufficient decrease on the equilibrium function, a general Armijo-type condition is imposed. This condition is shown to be satisfied for four different linesearches used in the literature. Then, the weak and strong convergence of the resulting algorithms is obtained under non-monotonicity assumptions. Finally, some numerical experiments are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.