Abstract

In this paper, we study projective algebra, p(M, F), of special (α, β)-metrics. The projective algebra of a Finsler space is a finite-dimensional Lie algebra with respect to the usual Lie bracket. We characterize p(M, F) of Matsumoto and square metrics of isotropic S-curvature of dimension n ≥ 3 as a certain Lie sub-algebra of the Killing algebra k(M, α). We also show that F has a maximum projective symmetry if and only if F either is a Riemannian metric of constant sectional curvature or locally Minkowskian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.