Abstract

The collection of all projective vector fields on a Finsler space $(M, F)$ is a finite-dimensional Lie algebra with respect to the usual Lie bracket, called the projective algebra denoted by $p(M,F)$ and is the Lie algebra of the projective group $P(M,F)$. The projective algebra $p(M,F=\alpha+\beta)$ of a Randers space is characterized as a certain Lie subalgebra of the projective algebra $p(M,\alpha)$. Certain subgroups of the projective group $P(M,F)$ and their invariants are studied. The projective algebra of Randers metrics of constant flag curvature is studied and it is proved that the dimension of the projective algebra of Randers metrics constant flag curvature on a compact $n$-manifold either equals $n(n+2)$ or at most is $\frac{n(n+1)}{2}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.