Abstract

The interfacial mechanisms of the stress-strain localization in non-homogeneous media are investigated, using a steel substrate - iron boride coating composition subjected to tension as an example. A dynamic boundary-value problem in a plane-strain formulation is solved numerically by the finite-difference method. The curvilinear substrate-coating interface geometry is assigned explicitly in calculations and is in agreement with experiment. Constitutive relations accounting for an elastic-plastic response of the isotropically-hardened substrate and for a brittle fracture of the coating are employed. Three stages of the plastic strain localization in the steel substrate are found to occur due to the irregular interface geometry. Distributions of the stress concentration regions in the coating are shown to be different at different stages. The stress concentration in the coating is demonstrated to increase nonlinearly during the third stage. The location of fracture is found to depend on the strength of the coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call