Abstract

When processing observational data from global navigation satellite systems (GNSS), the carrier phase measurements are generally assumed to follow a normal distribution. Although full knowledge of the probability distribution of the observables is not required for parameter estimation, for example when using the least-squares method, the distributional properties of GNSS observations play a key role in quality control procedures, such as outlier and cycle-slip detection, in ambiguity resolution, as well as in the reliability assessment of estimation results. In addition, when applying GNSS positioning under critical observation conditions with respect to multipath and atmospheric effects, the validity of the normal distribution assumption of GNSS observables certainly comes into doubt. This paper illustrates the discrepancies between the normal distribution assumption and reality, based on a large and representative data set of GPS phase measurements covering a range of factors, including multipath impact, baseline length, and atmospheric conditions. The statistical inferences are made using the first through fourth sample moments, hypothesis tests, and graphical tools such as histograms and quantile---quantile plots. The results show clearly that multipath effects, in particular the near-field component, produce the dominant influence on the distributional characteristics of GNSS observables. Additionally, using surface meteorological data, considerable correlations between distributional deviations from normality on the one hand and atmospheric relative humidity on the other are detected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call