Abstract

We study the Prime Graph Question for integral group rings. This question can be reduced to almost simple groups by a result of Kimmerle and Konovalov. We prove that the Prime Graph Question has an affirmative answer for all almost simple groups having a socle isomorphic to [Formula: see text] for [Formula: see text], establishing the Prime Graph Question for all groups where the only non-abelian composition factors are of the aforementioned form. Using this, we determine exactly how far the so-called HeLP method can take us for (almost simple) groups having an order divisible by at most four different primes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.