Abstract

The prime graph question asks whether the Gruenberg–Kegel graph of an integral group ring [Formula: see text], i.e. the prime graph of the normalized unit group of [Formula: see text], coincides with that one of the group [Formula: see text]. In this note, we prove for finite groups [Formula: see text] a reduction of the prime graph question to almost simple groups. We apply this reduction to finite groups [Formula: see text] whose order is divisible by at most three primes and show that the Gruenberg–Kegel graph of such groups coincides with the prime graph of [Formula: see text].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.