Abstract

Perforated plates are widely used in pipeline systems either to reduce flow nonuniformities or to attenuate the onset and the development of cavitation. This experimental work aims at investigating the dependence of the pressure losses through sharp-edged perforated plates with respect to the geometrical and flow key parameters. The data, collected in two large experimental campaigns carried out on different pilot plants, are reported and discussed. Several plates with different geometrical characteristics were tested. More precisely, perforated plates whose equivalent diameter ratio varies between 0.20 and 0.72; relative hole thickness between 0.20 and 1.44; and number of holes between 3 and 52. Experimental data from literature are also considered in order to ensure the reliability of the parametric investigation. The dependence of the pressure loss coefficient upon the Reynolds number, the equivalent diameter ratio, the relative thickness, and the number and disposition of the holes is studied. A comparison to different empirical equations, as available by the technical literature, and to the standard ISO 5167-2 single-hole orifice is also provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call