Abstract

This study focuses on multi-holed orifice plates, which have superior flow measuring characteristics as compared to their conventional counterparts. However, literature is scant on quantitative parametric investigations. In this experimental study, the performance of a multi-holed orifice plate is evaluated for variable number of holes (n), equivalent diameter ratio (EDR), compactness ratio (C), plate thickness ratio (s/d) and upstream developing length (L/D) in developing flow regimes for the Reynolds number range of 24,500–55,500 by using Central Composite Design. A total number of 324 experiments were performed. It was found that EDR has the most significant effect on pressure loss coefficient, followed by ‘n’ and ‘C’. Moreover, it was found out that single orifice (SO) and multi-holed orifice (MO) have almost the same pressure losses for the same value of EDR/β. However, flow develops quickly for MOs. Higher values of coefficient of discharge were observed in the case of MOs as compared to the SOs with little effect of upstream disturbances. The effect of developing length is significant on the accuracy of orifice meter. However, when the multi-holed orifice plates are installed at 2D upstream length, the effect of upstream disturbances are diminished. This result provides the flexibility of installation, which means that multi-holed orifices can be installed at 2D. The experimental data is in good agreement with literature. Finally, an optimum orifice plate (5,0.4,0.7) was selected for flow developing region with minimum pressure loss coefficient based upon the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call