Abstract

The electrochemical oxidation of 2-aminodiphenylamine (2ADPA) was performed by cyclic scanning of the potential in aqueous HCl solutions. A mixture of oligomeric compounds, named poly(2ADPA), was deposited on the surface of the electrode. The chemical structures present in poly(2ADPA) containing phenazine units and open-ring units were assigned by 1H NMR spectroscopy. CV results revealed that the redox transformation of poly(2ADPA) from the fully reduced to the fully oxidized state occurs under a single voltammetric peak. The SEM images obtained for the polymer deposited on platinum substrates showed a “fallen leaves” morphology. In situ FTIR spectroscopy experiments carried out during the reversible oxidation of the polymer revealed that the conversion of aromatic rings (1500 cm −1) into quinoid structures (1524–1590 cm −1) is of major significance. Besides, the transformation of secondary aromatic amines (1301 cm −1) into fully oxidized imines and polaronic structures (1470, 1389, 1330 and 1250 cm −1) has been observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.