Abstract

A comprehensive understanding of the factors governing the efficiency of metallophthalocyanine-based photothermal sensitizers requires the knowledge of their excited-state dynamics. This can only be properly gained when the nature and energy of the excited states (often spectroscopically silent) lying between the photogenerated state and the ground state are known. Here the excited state deactivation mechanism of two very promising metallophthalocyanine-based photothermal sensitizers, NiPc(OBu) 8 and NiNc(OBu) 8, is reviewed. It is shown that time dependent density functional theory (TDDFT) methods are capable to provide reliable information on the nature and energies of the low-lying excited states along the relaxation pathways. TDDFT calculations and ultrafast experiments consistently show that benzoannulation of the Pc ring modifies the photodeactivation mechanism of the photogenerated S 1(π, π ∗) state by inducing substantial changes in the relative energies of the excited states lying between the S 1(π, π ∗) state and the ground state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.