Abstract

We have analyzed the pH dependencies of published amide proton exchange rates (kex) in three proteins: bovine pancreatic trypsin inhibitor (BPTI), bull seminal plasma proteinase inhibitor IIA (BUSI IIA), and calbindin D9K. The base-catalyzed exchange rate constants (kOH) of solvent exposed amides in BPTI are lower for residues with low peptide carbonyl exposure, showing that the environment around the carbonyl oxygen influences kOH. We also examined the possible importance of an exchange mechanism that involves formations of imidic acid intermediates along chains of hydrogen-bonded peptides in the three proteins. By invoking this "relayed imidic acid exchange mechanism," which should be essentially acid-catalyzed, we can explain the surprisingly high pHmin (the pH value at which kex reaches a minimum) found for the non-hydrogen-bonded amide protons in the beta-sheet in BPTI. The successive increase of pHmin along a chain of hydrogen-bonded peptides from the free amide to the free carbonyl, observed in BPTI, can be explained as an increasing contribution of the proposed mechanism in this direction of the chain. For BUSI IIA (pH 4-5) and calbindin D9K (pH 6-7) the majority of amide protons with negative pH dependence of kex are located in chains of hydrogen-bonded peptides; this situation is shown to be consistent with the proposed mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.