Abstract

Nuclear magnetic resonance was used to measure the hydrogen-deuterium exchange rates for individual interior amide protons in a group of small globular proteins related to the basic pancreatic trypsin inhibitor (BPTI). These proteins include two homologous proteins and seven chemical modifications of BPTI. It was previously shown that the spatial structure of BPTI is preserved in all these related proteins. The exchange rates for corresponding amide protons in the different proteins were found to vary by a factor of as much as 5 X 104. The proton exchange is correlated with the thermal stability of the proteins, i.e. the lower the denaturation temperature, the faster the NH exchange. Further evidence that the exchange of interior amide protons is promoted by global fluctuations of the protein structures comes from the observation that the order of the relative exchange rates for the individual protons is the same in all the different species. This is the third in a series of three papers on nuclear magnetic resonance studies of labile protons in BPTI-related proteins. A detailed interpretation of the data will be given in a forthcoming paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.