Abstract

We investigate lunar troctolite petrogenesis with a series of forward models. We simulate the cumulate mantle overturn hypothesis by modeling the adiabatic ascent and decompression melting of primary mantle cumulates produced during differentiation of a lunar magma ocean (LMO). Combined equilibrium and fractional crystallization of candidate liquids generated by the melting model can reproduce the predominant constituents of the lunar magnesian-suite (Mg-suite: troctolites and norites), contrary to previous hypotheses. Model results are consistent with previous studies challenging the proposed and long-standing genetic relationship between Mg-suite and gabbronorites.Our Mg-suite petrogenetic model validates a direct temporal and chemical link between Mg-suite melt production and pressure-release melting of primary LMO cumulates. If so, Mg-suite crystallization ages (4345 ± 15 Ma) can be used to constrain the onset and duration of melting associated with mantle overturn. Based on our model results, we propose an alternative mantle overturn hypothesis whereby upwelling olivine-dominated cumulates experience decompression melting to produce the Mg-suite primary melt (∼1.9% melt at ∼2.1 GPa), but that this melt was extracted from depth akin to lunar picritic glass magmas (low-degree partial melts at depths corresponding to ∼1.3–2.5 GPa). Thus, our revised mantle overturn hypothesis reconciles Mg-suite petrogenesis without the expanse of an olivine-dominated upper mantle (as suggested by the current paradigms, but contradicted by orbital data). This hypothesis supports the presence of a low-Ca pyroxene dominated upper mantle, consistent with mantle stratigraphy constrained by experimental and numerical simulations of LMO differentiation and proposed mantle exposures within impact basins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call