Abstract
Relationships between Bulk Silicate Moon FeO Content and Bulk Moon Physical Properties
Highlights
Estimates of the bulk silicate Moon (BSM) composition have been proposed based on a number of different geochemical, petrological and geophysical arguments but have yet to arrive at a general consensus
In order to obtain further constraints on the BSM composition, we investigated the effect of the BSM FeO content on the physical properties of lunar mantle reservoirs and tested the consistency of different lunar interior models with the bulk Moon density and moment of inertia
To cover all lunar interior models that are consistent with a given BSM composition, we modeled the properties of the chemical reservoirs forming from lunar magma ocean (LMO) solidification, considered the re-distribution of these reservoirs in the lunar mantle by solid state convection, and calculated the bulk Moon density and moment of inertia of the resulting interior models, assuming varying core properties and selenotherms
Summary
Estimates of the bulk silicate Moon (BSM) composition have been proposed based on a number of different geochemical, petrological and geophysical arguments but have yet to arrive at a general consensus. In order to obtain further constraints on the BSM composition, we investigated the effect of the BSM FeO content on the physical properties of lunar mantle reservoirs and tested the consistency of different lunar interior models with the bulk Moon density and moment of inertia
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.