Abstract

For \cal{N}=1 SU(N) SYM theories obtained as marginal deformations of the \cal{N}=4 parent theory we study perturbatively some sectors of the chiral ring in the weak coupling regime and for finite N. By exploiting the relation between the definition of chiral ring and the effective superpotential we develop a procedure which allows us to easily determine protected chiral operators up to n loops once the superpotential has been computed up to (n-1) order. In particular, for the Lunin-Maldacena beta-deformed theory we determine the quantum structure of a large class of operators up to three loops. We extend our procedure to more general Leigh-Strassler deformations whose chiral ring is not fully understood yet and determine the weight-two and weight-three sectors up to two loops. We use our results to infer general properties of the chiral ring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.