Abstract
In this paper, we first prove that the solution map of the Cauchy problem for a coupled Camassa–Holm system is not uniformly continuous in \({H^{s}(\mathbb{T}) \times H^{s}(\mathbb{T}),s > \frac{3}{2}}\), the proof of which is based on well posedness estimates and the method of approximate solutions. Then we study the continuity properties of its solution map further and show that it is Holder continuous in the \({H^\sigma(\mathbb{T}) \times H^\sigma(\mathbb{T})}\) topology with \({\frac{1}{2} < \sigma < s}\). Our results can also be carried out on the nonperiodic case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.