Abstract

ABSTRACTIn this paper, we are concerned with the Cauchy problem of the generalized Camassa–Holm equation. Using a Galerkin-type approximation scheme, it is shown that this equation is well posed in Sobolev spaces for both the periodic and the nonperiodic case in the sense of Hadamard. That is, the data-to-solution map is continuous. Furthermore, it is proved that this dependence is sharp by showing that the solution map is not uniformly continuous. The nonuniform dependence is proved using the method of approximate solutions and well-posedness estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.