Abstract

We consider the periodic behavior of the generalized Chazy differential equation x⃛+|x|qx¨+k|x|qxx˙2=0, where q is a positive integer and k is a real number. We give a pure analysis on the existence of non-trivial periodic solutions for k=q+1 and the non-existence of them for k≠q+1. Our method is based on considering the projections of the orbits onto the phase plane (x,x˙). We find that a non-trivial periodic solution of the equation is equivalent to a closed curve formed by two equilibrium points and two orbits with some specific constraints in the corresponding planar system and that the existence of such closed curves can be obtained by the existence of real zeros of some returning map. Our conclusion covers all q, which completes a recent result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.