Abstract

In this paper, we consider a coded cooperative communication network with multiple energy-harvesting (EH) relays. In order to adequately address the problem of error propagation due to the erroneous decoding at the relays, as in the case of conventional decode and forward (DF) relaying protocol, we propose coded cooperative schemes with hard information relaying (HIR) and soft information relaying (SIR) strategies. The performance of the relayed communication with EH relay depends crucially on the channel decoding capability at the relay, channel gains at the source–relay and relay–destination links, and ultimately on the power-splitting ratio of the relay EH receiver. The exact closed-form expression for the outage probability performance of the coded cooperative scheme with HIR strategy and relay selection (CC-HIR-RS) is derived for both cases, namely for constant and optimal power-splitting ratios. Concerning the coded cooperative scheme with SIR strategy, a Rayleigh Gaussian log likelihood ratio-based model is used to describe the soft estimated symbols at the output of the relay soft encoder. Directives are provided to determine the model parameters, and, accordingly, the signal-to-noise ratio (SNR) of the equivalent one-hop relaying channel is derived. A closed-form expression for the outage probability performance of the proposed coded cooperative scheme with SIR and relay selection (CC-SIR-RS) is derived. In addition, a fuzzy logic-based power-splitting scheme in EH relay applying SIR is proposed. The fading coefficients of the source–relay and relay–destination links and distance between source and relay node are considered as input parameters of the fuzzy logic system to obtain an appropriate power-splitting ratio that leads to a quasi-optimal SNR of the equivalent end-to-end channel. Monte Carlo simulations are presented to demonstrate the validity of the analytical results, and a comparison between the performance of the CC-HIR-RS scheme with constant and optimized power-splitting ratios and that of the CC-SIR-RS scheme with constant and fuzzy logic-based power-splitting ratios is provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call