Abstract

Let E/F be a finite Galois extension of totally real number fields and let p be a prime. The `p-adic Stark conjecture at s=1' relates the leading terms at s=1 of p-adic Artin L-functions to those of the complex Artin L-functions attached to E/F. We prove this conjecture unconditionally when E/Q is abelian. We also show that for certain non-abelian extensions E/F the p-adic Stark conjecture at s=1 is implied by Leopoldt's conjecture for E at p. Moreover, we prove that for a fixed prime p, the p-adic Stark conjecture at s=1 for E/F implies Stark's conjecture at s=1 for E/F. This leads to a `prime-by-prime' descent theorem for the `equivariant Tamagawa number conjecture' (ETNC) for Tate motives at s=1. As an application of these results, we provide strong new evidence for special cases of the ETNC for Tate motives and the closely related `leading term conjectures' at s=0 and s=1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.