Abstract
AbstractLet L/K be a finite Galois extension of number fields with Galois group G. We use leading terms of Artin L-series at strictly negative integers to construct elements which we conjecture to lie in the annihilator ideal associated to the Galois action on the higher dimensional algebraic K-groups of the ring of integers in L. For abelian G our conjecture coincides with a conjecture of Snaith and thus generalizes also the well-known Coates–Sinnott conjecture. We show that our conjecture is implied by the appropriate special case of the equivariant Tamagawa number conjecture (ETNC) provided that the Quillen–Lichtenbaum conjecture holds. Moreover, we prove induction results for the ETNC in the case of Tate motives h0(Spec(L))(r), where r is a strictly negative integer. In particular, this implies the ETNC for the pair (h0(Spec(L))(r), ), where L is totally real, r < 0 is odd and is a maximal order containing ℤ[]G, and will also provide some evidence for our conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.