Abstract

<p>Several observational studies have shown that external (i.e. solar wind and magnetosheath) dynamic pressure variations can drive quasi-periodic perturbations of the geomagnetic field. In this study, we utilise multi-spacecraft (ARTEMIS, Cluster, GOES, and THEMIS) mission measurements and investigate step-like increases and quasi-periodic variations of solar wind dynamic pressure as the source mechanism of geomagnetic pulsations with frequencies between ~0.5 to 15 mHz. During intervals of slow solar wind and low geomagnetic activity — to exclude waves generated by velocity shear at the magnetopause and substorm contributions — common periodicities in electromagnetic field oscillations inside the magnetosphere and the solar wind driver are detected in Lomb-Scargle periodograms. The causal relationship is examined in frequency and polarisation signatures of waves detected at the various probes using continuous wavelet transform, cross-wavelet spectra and wavelet transform coherence. The observed dependence of wave properties on their localisation offers excellent source verification for ULF Pc4-5  waves originating in dynamic pressure variations in the upstream solar wind and propagating in the dayside magnetosphere through the field line resonance process.</p><p>This research is co-financed by Greece and the European Union (European Social Fund - ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning 2014-2020” in the context of the project ULFpulse (MIS: 5048130).</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call