Abstract
A new class of materials, which rely on the dispersion strengthening of SiC particles in addition to precipitation strengthening by nano-precipitates is being developed for the application in molten salt nuclear reactors. A battery of dispersion and precipitation strengthened (DPS) NiMo-based alloys containing varying amount of SiC (0.5–2.5wt.%) was prepared via a mechanical alloying (MA) route followed by spark plasma sintering (SPS), rapid cooling, high-temperature annealing and water quenching. Lab X-ray Diffraction (XRD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the microstructural characterization of this new type of alloys. It is shown that the NiMo matrix of these alloys is effectively reinforced by dispersion of SiC from the initial powder mixture and nano-Ni3Si precipitates, which precipitated during the sintering/annealing process. Furthermore, the matrix is strengthened by solid-solution of Mo in Ni. As a result, these newly developed NiMo alloys take advantage of dispersion, precipitation and solid solution strengthening, which leads to their superior mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.