Abstract

King [1] established that due to the discrete nature of their dislocation structure, finite length grain boundaries (GBs) in polycrystalline materials possess discrete values of misorientation angle. For a GB with a length that is not a multiple of the GB period, this leads to the formation of specific disclinations at their junctions with neighboring GBs, which compensate the difference between the misorientations of finite and infinite boundaries. In the present paper the origin of these compensating disclinations within GB triple junctions is elucidated and their strength is calculated using the disclination-structural unit model. It is shown that for a GB with length of about 10 nm the junction disclinations can have a strength value not more than 1°, in contrast to King's calculations that indicate much larger values. Elastic energies of triple junctions due to compensating disclinations are calculated for both equilibrium and non-equilibrium structures of a finite length GB, which differ by the position of the grain boundary dislocation network with respect to the junctions. The calculations show that triple junction energies are comparable to dislocation energies, and that compensating disclinations can play a significant role in the properties of nanocrystalline metals with grain sizes less than about 10 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.