Abstract
The (optimal) function/gradient evaluations worst-case complexity analysis available for the adaptive regularization algorithms with cubics (ARC) for nonconvex smooth unconstrained optimization is extended to finite-difference versions of this algorithm, yielding complexity bounds for first-order and derivative-free methods applied on the same problem class. A comparison with the results obtained for derivative-free methods by Vicente [Worst Case Complexity of Direct Search, Technical report, Preprint 10-17, Department of Mathematics, University of Coimbra, Coimbra, Portugal, 2010] is also discussed, giving some theoretical insight into the relative merits of various methods in this popular class of algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.