Abstract

We consider a system, containing a library of multiple files and a general memoryless communication network through which a server is connected to multiple users, each equipped with a local isolated cache of certain size that can be used to store part of the library. Each user will ask for one of the files in the library, which needs to be delivered by the server through the intermediate communication network. The objective is to design the cache placement (without prior knowledge of users' future requests) and the delivery phase in order to minimize the (normalized) delivery delay. We assume that the delivery phase consists of two steps: (1) generation of a set of multicast messages at the server, one for each subset of users, and (2) delivery of the multicast messages to the users. In this setting, we show that there exists a universal scheme for cache placement and multicast message generation, which is independent of the underlying communication network between the server and the users, and achieves the optimal delivery delay to within a constant factor for all memoryless networks. We prove this result, even though the capacity region of the underlying communication network is not known, even approximately. This result shows that in the aforementioned setting, a separation between caching and multicast message generation on one hand, and delivering the multicast messages to the users on the other hand is approximately optimal. This result has the important practical implication that the prefetching can be done independent of network structure in the upcoming delivery phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call