Abstract
We investigate L1→L∞ dispersive estimates for the one dimensional Dirac equation with a potential. In particular, we show that the Dirac evolution satisfies the natural t−12 decay rate, which may be improved to t−32 at the cost of spatial weights when the thresholds are regular. We classify the structure of threshold obstructions, showing that there is at most a one dimensional space at each threshold. We show that, in the presence of a threshold resonance, the Dirac evolution satisfies the natural decay rate, and satisfies the faster weighted bound except for a piece of rank at most two, one per threshold. Further, we prove high energy dispersive bounds that are near optimal with respect to the required smoothness of the initial data. To do so we use a variant of a high energy argument that was originally developed to study Kato smoothing estimates for magnetic Schrödinger operators. This method has never been used before to obtain L1→L∞ estimates. As a consequence of our analysis we prove a uniform limiting absorption principle, Strichartz estimates, and prove the existence of an eigenvalue free region for the one dimensional Dirac operator with a non-self-adjoint potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.