Abstract

ABSTRACTThe emergence and worldwide dissemination of carbapenemase-producing Gram-negative bacteria are a major public health threat. Metallo-β-lactamases (MBLs) represent the largest family of carbapenemases. Regrettably, these resistance determinants are spreading worldwide. Among them, the New Delhi metallo-β-lactamase (NDM-1) is experiencing the fastest and largest geographical spread. NDM-1 β-lactamase is anchored to the bacterial outer membrane, while most MBLs are soluble, periplasmic enzymes. This unique cellular localization favors the selective secretion of active NDM-1 into outer membrane vesicles (OMVs). Here, we advance the idea that NDM-containing vesicles serve as vehicles for the local dissemination of NDM-1. We show that OMVs with NDM-1 can protect a carbapenem-susceptible strain of Escherichia coli upon treatment with meropenem in a Galleria mellonella infection model. Survival curves of G. mellonella revealed that vesicle encapsulation enhances the action of NDM-1, prolonging and favoring bacterial protection against meropenem inside the larva hemolymph. We also demonstrate that E. coli cells expressing NDM-1 protect a susceptible Pseudomonas aeruginosa strain within the larvae in the presence of meropenem. By using E. coli variants engineered to secrete variable amounts of NDM-1, we demonstrate that the protective effect correlates with the amount of NDM-1 secreted into vesicles. We conclude that secretion of NDM-1 into OMVs contributes to the survival of otherwise susceptible nearby bacteria at infection sites. These results disclose that OMVs play a role in the establishment of bacterial communities, in addition to traditional horizontal gene transfer mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.