Abstract

This article addresses systems of linear ordinary differential equations with an identically degenerate matrix in the main part. Such formulations of problems in literature are usually called differential-algebraic equations. In this work, attention is paid to the problems of the second order. Basing on the theory of matrix pencils and polynomials, sufficient conditions for existence and uniqueness of the equations’ solution are given. To solve them numerically, authors investigate a multistep method and its version based on a reformulated notation of the original problem. This representation makes it possible to construct methods whose coefficient matrices can be calculated at previous points. This approach has delivered good results in numerical solution of first-order differential-algebraic equations that contain stiff and rapidly oscillating components and have singular matrix pencil. The stability of proposed numerical algorithm is investigated for the well-known test equation. It is shown that this difference scheme has the first order of convergence. Numerical calculations of the model problem are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.