Abstract
In this article, we study the initial value problem of a non-homogeneous singular linear discrete time system whose coefficients are either non-square constant matrices or square with an identically zero matrix pencil. By taking into consideration that the relevant pencil is singular, we provide necessary and sufficient conditions for existence and uniqueness of solutions. More analytically we study the conditions under which the system has unique, infinite and no solutions. Furthermore, we provide a formula for the case of the unique solution. Finally we provide some numerical examples based on a singular discrete time real dynamical system to justify our theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.