Abstract

In this paper we develop dissipativity results for discrete nonlinear and linear singular systems. To the best knowledge of author results are nonexistent. We generalize dissipativity theory to discrete nonlinear singular dynamical systems. Specifically, the classical concepts of system storage functions and supply rates are extended to singular dynamical systems providing a generalized system energy interpretation in terms of stored energy and dissipated energy over the discrete-time system dynamics. For the class of discrete singular systems we present Kalman-Yakubovich-Popov conditions in terms of the discrete singular system dynamics characterizing dissipativeness via system storage function. The framework is specialized to passive and nonexpansive discrete singular systems to provide a generalization of the classical notions of passivity and nonexpansivity for nonlinear discrete singular systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.