Abstract
In this article, a numerical technique called shooting which entails the solution of initial value problems with the single-step fourth-order RungeKutta method together with the iterative root finding secant method is formulated for use on both linear and non-linear boundary value problems of ordinary differential equations with Dirichlet boundary conditions. Two examples are illustrated. One, the solution of the linear case with its analytic counterpart is compared, and two, the non-linear case. Graphical outputs of the solutions from two MATHEMATICA codes are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.