Abstract

<abstract> <p>In this work, we design, analyze, and test an efficient algorithm based on the finite difference method and wavelet Galerkin method to solve the well known Fisher's equation. We employed the Crank-Nicolson scheme to discretize the time interval into a finite number of time steps, and this gives rise to an ordinary differential equation at each time step. To solve this ODE, we utilize the multiwavelets Galerkin method. The $ L^2 $ stability and convergence of the scheme have been investigated by the energy method. Illustrative examples are provided to verify the efficiency and applicability of the method.</p> </abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.