Abstract

We show that, in an alphabet of n symbols, the number of words of length n whose number of different symbols is away from (1−1/e)n, which is the value expected by the Poisson distribution, has exponential decay in n. We use Laplace's method for sums and known bounds of Stirling numbers of the second kind. We express our result in terms of inequalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.