Abstract

The goal of this paper is to investigate the normal and tangential forces acting at the point of contact between a horizontal surface and a rolling ball actuated by internal point masses moving in the ball's frame of reference. The normal force and static friction are derived from the equations of motion for a rolling ball actuated by internal point masses that move inside the ball's frame of reference, and, as a special case, a rolling disk actuated by internal point masses. The masses may move along one-dimensional trajectories fixed in the ball's and disk's frame. The dynamics of a ball and disk actuated by masses moving along one-dimensional trajectories are simulated numerically and the minimum coefficients of static friction required to prevent slippage are computed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.