Abstract
In this paper, we investigate existence and uniqueness of solutions of nonlinear Volterra-Fredholm impulsive integrodifferential equations. Utilizing theory of Picard operators we examine data dependence of solutions on initial conditions and on nonlinear functions involved in integrodifferential equations. Further, we extend the integral inequality for piece-wise continuous functions to mixed case and apply it to investigate the dependence of solution on initial data through $epsilon$-approximate solutions. It is seen that the uniqueness and dependency results got by means of integral inequity requires less restrictions on the functions involved in the equations than that required through Picard operators theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Nonlinear Analysis and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.