Abstract

The evaluation of a new statistical-based analysis is discussed in this paper, leading to the fatigue life assessment at three different applied stresses during the cyclic testing procedure. Fatigue tests were performed following the standard ASTM: E466-07. These tests involve a strain gauge being attached to the specimen. For this test, AISI 1045 carbon steel was used as material due to its wide application in automotive and machinery industries. Fatigue tests were performed at three different stress levels of 305MPa, 325MPa, and 345MPa with the testing frequency of 8Hz, and the strain signals were collected accordingly. The Integrated Kurtosis-based Algorithm for Z-filter (I-kaz) approach, which provides its coefficient and three dimensional graphics, was utilised to define a statistically-based fatigue behaviour pattern. The I-kaz technique was used to extract strain signal patterns at the respective low, medium, and high frequency ranges for each signal at specific applied testing stress level. Results showed that highest strain amplitude occur at the low frequency range, suggesting the capability of I-kaz to identify fatigue damage pattern of metallic materials using statistical representation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.