Abstract

ABSTRACT X-ray images of galaxy clusters and gas-rich elliptical galaxies show a wealth of small-scale features that reflect fluctuations in density and/or temperature of the intracluster medium. In this paper we study these fluctuations in M87/Virgo to establish whether sound waves/shocks, bubbles, or uplifted cold gas dominate the structure. We exploit the strong dependence of the emissivity on density and temperature in different energy bands to distinguish between these processes. Using simulations we demonstrate that our analysis recovers the leading type of fluctuation even in the presence of projection effects and temperature gradients. We confirm the isobaric nature of cool filaments of gas entrained by buoyantly rising bubbles, extending to 7′ to the east and southwest, and the adiabatic nature of the weak shocks at 40″ and 3′ from the center. For features of ∼5–10 kpc, we show that the central 4′ × 4′ region is dominated by cool structures in pressure equilibrium with the ambient hotter gas while up to 30% of the variance in this region can be ascribed to adiabatic fluctuations. The remaining part of the central 14′ × 14′ region, excluding the arms and shocks described above, is dominated by apparently isothermal fluctuations (bubbles) with a possible admixture (at the level of ∼30%) of adiabatic (sound waves) and by isobaric structures. Larger features, of about 30 kpc, show a stronger contribution from isobaric fluctuations. The results broadly agree with a model based on feedback from an active galactic nucleus mediated by bubbles of relativistic plasma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.