Abstract

Abstract We present the statistical analysis of X-ray surface brightness and gas density fluctuations in the cool cores of 10 nearby, X-ray-bright galaxy clusters that have deep Chandra observations and show observational indications of radio-mechanical active galactic nucleus (AGN) feedback. Within the central parts of the cool cores, the total variance of fluctuations is dominated by isobaric and/or isothermal fluctuations on spatial scales ∼10–60 kpc, which are likely associated with slow gas motions and bubbles of relativistic plasma. Adiabatic fluctuations, associated with weak shocks and/or sonic turbulence, constitute less than 10% of the total variance in all clusters. The typical amplitude of density fluctuations is small, ∼10% or less on scales of ∼10–15 kpc. The observed subdominant contribution of adiabatic fluctuations and the small amplitude of density fluctuations support a model of gentle AGN feedback. The measured one-component velocities of gas motions are typically below 100–150 km s−1 on scales <50 kpc and can be up to ∼300 km s−1 on ∼100 kpc scales. The nonthermal energy is <12% of the thermal energy. Regardless of the source that drives these motions, the dissipation of the energy in such motions provides heat that is sufficient to balance radiative cooling on average, albeit with significant uncertainties. The results presented here support previous conclusions based on the analysis of the Virgo and Perseus Clusters and agree with the Hitomi measurements. With next-generation observatories like Athena and Lynx, these techniques will be yet more powerful.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.