Abstract
We study the Mumford–Tate conjecture for hyperkähler varieties. We show that the full conjecture holds for all varieties deformation equivalent to either an Hilbert scheme of points on a K3 surface or to O’Grady’s ten dimensional example, and all of their self-products. For an arbitrary hyperkähler variety whose second Betti number is not 3, we prove the Mumford–Tate conjecture in every codimension under the assumption that the Künneth components in even degree of its André motive are abelian. Our results extend a theorem of André.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.