Abstract

Using reduced Gromov–Witten theory, we define new invariants which capture the enumerative geometry of curves on holomorphic symplectic 4-folds. The invariants are analogous to the BPS counts of Gopakumar and Vafa for Calabi–Yau 3-folds, Klemm and Pandharipande for Calabi–Yau 4-folds, and Pandharipande and Zinger for Calabi–Yau 5-folds. We conjecture that our invariants are integers and give a sheaf-theoretic interpretation in terms of reduced 4-dimensional Donaldson–Thomas invariants of one-dimensional stable sheaves. We check our conjectures for the product of two K3 surfaces and for the cotangent bundle of P2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb {P}}^2$$\\end{document}. Modulo the conjectural holomorphic anomaly equation, we compute our invariants also for the Hilbert scheme of two points on a K3 surface. This yields a conjectural formula for the number of isolated genus 2 curves of minimal degree on a very general hyperkähler 4-fold of K3[2]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K3^{[2]}$$\\end{document}-type. The formula may be viewed as a 4-dimensional analogue of the classical Yau–Zaslow formula concerning counts of rational curves on K3 surfaces. In the course of our computations, we also derive a new closed formula for the Fujiki constants of the Chern classes of tangent bundles of both Hilbert schemes of points on K3 surfaces and generalized Kummer varieties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call