Abstract

This paper re-examines the boundary conditions at the moving front of a hydraulic fracture when the fluid front has coalesced with the crack edge. This practically important particular case is treated as the zero fluid lag limit of the general case when the two fronts are distinct. The limiting process shows what becomes of the two boundary conditions on the fluid front, a pressure condition and a Stefan condition, when the lag vanishes. On the one hand, the pressure condition disappears as the net pressure (the difference between the fluid pressure and the magnitude of the far-field stress normal to the fracture) becomes singular. On the other hand, the Stefan condition, which equates the front velocity to the average fluid velocity, transforms into a zero flux boundary condition at the front. As a consequence, the velocity of the coalesced front does not appear explicitly in the boundary conditions. However, the front velocity can still be extracted from the near-tip aperture field by a nonlinear asymptotic analysis. The paper concludes with a description of an algorithm to propagate the combined front, which explicitly uses the known multiscale asymptotics of the fracture aperture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.