Abstract

Pairwise comparisons are used in a wide variety of decision situations where the importance of alternatives should be measured on a numerical scale. One popular method to derive the priorities is based on the right eigenvector of a multiplicative pairwise comparison matrix. We consider two monotonicity axioms in this setting. First, increasing an arbitrary entry of a pairwise comparison matrix is not allowed to result in a counter-intuitive rank reversal, that is, the favoured alternative in the corresponding row cannot be ranked lower than any other alternative if this was not the case before the change (rank monotonicity). Second, the same modification should not decrease the normalised weight of the favoured alternative (weight monotonicity). Both properties are satisfied by the geometric mean method but violated by the eigenvector method. The axioms do not uniquely determine the geometric mean. The relationship between the two monotonicity properties and the Saaty inconsistency index are investigated for the eigenvector method via simulations. Even though their violation turns out not to be a usual problem even for heavily inconsistent matrices, all decision-makers should be informed about the possible occurrence of such unexpected consequences of increasing a matrix entry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.