Abstract

AbstractA general modulus of continuity is quantified for locally bounded, local, weak solutions to nonlocal parabolic equations, under a minimal tail condition. Hölder modulus of continuity is then deduced under a slightly stronger tail condition. These regularity estimates are demonstrated under the framework of nonlocal ‐Laplacian with measurable kernels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.