Abstract
A model of one-dimensional random walk based on the memory flow phenomenology is constructed. In this model, the jumps of the random walk process have a convolution structure formed on the basis of a finite sequence of memory functions and a stationary, generally speaking, non-Gaussian sequence. A physical interpretation of memory functions and the stationary sequence is given. A limit theorem in the metric space D[0,1] for the normalized walk process is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.