Abstract

We combine broadband dielectric spectroscopy (BDS) with 1H and 2H nuclear magnetic resonance (NMR) to study molecular dynamics in mixtures of ε-polylysine with H2O or D2O. In BDS, four relaxation processes can be attributed to molecular dynamics. While the fastest process P1 obeys the Arrhenius law, the slowest process P4 shows prominent non-Arrhenius behavior typical of structural α relaxation. For the intermediate processes P2 and P3, the temperature dependence changes at the glass transition temperature Tg. The 1H and 2H NMR results yield insights into the molecular origins of these relaxation phenomena. In these NMR analyses, we exploit, in addition to the isotope selectivity of the method, the possibility to distinguish between various types of motion based on their respective line-shape effects and the capability to single out specific molecular moieties based on different spin-lattice relaxation behaviors. In this way, we reveal that process P1 results from the rotation of side and end groups of the peptide, while process P2 is caused by a reorientation of essentially all water molecules, which are quasi-isotropic and survive well below Tg. As for the peptide backbone dynamics, we find evidence that rotational motion of polar groups is involved in process P3 and that nonpolar regions show a dynamical process, which is located between P3 and P4. Thus, the NMR analyses do not yield evidence for coexisting fast peptide-decoupled and slow peptide-coupled water species, which contribute to BDS processes P2 and P3, respectively, but minor bimodality of water motion may remain undetected. Finally, it is demonstrated that the proton/deuteron exchange needs to be considered when interpreting experimental results for molecular dynamics in aqueous peptide solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call