Abstract

This paper addresses the important issue of how to optimize the performance of the current mobile backhaul Radio Access Network (RAN) infrastructure to cope with the growing and dynamic nature of the emerging data-centric mobile multimedia traffic and services. Specifically, this work proposes and devises a simple and cost-effective EPON-based dynamic multiservice RAN architecture that efficiently transports and supports a wide range of existing and emerging data-centric mobile multimedia traffic and services along with the diverse quality of service (QoS) and rate requirements set by these services. To conform to the emerging Fourth-Generation (4G) Long-Term Evolution (LTE) standards, the proposed centralized packet-based RAN architecture is further evolved to a distributed architecture. The performance of the distributed packet-based RAN architecture is then examined and compared with that of the centralized one. In general, the simulation results indicate that packet-based RAN architectures are far better suited for coping with the dynamic and bursty traffic pattern of the emerging data-centric mobile multimedia services along with the diverse QoS and rate requirements set by these services.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call