Abstract

In futuristic wireless communications, a massive number of devices need to access networks with diverse quality of service (QoS) requirements. It is estimated that the number of connected devices will exceed 20 billions in 2020, and machine-to-machine (M2M) devices will account for nearly half of total connected devices. However, existing cellular systems and wireless standards, designed primarily for human-to-human (H2H) communications focusing on reducing access latency, increasing data rate, and system throughput, are not well suited for M2M communications that require massive connections, diverse QoS requirements, and low energy consumption. Radio resource management (RRM) in conventional H2H communications aims at improving spectrum efficiency and energy efficiency. Similarly, RRM also plays a vital role in M2M communications. In this paper, we make a comprehensive survey on state-of-the-art research activities on RRM in M2M communications. First, we discuss the issues on RRM for machine-type communications in LTE/LTE-A cellular networks including access control, radio resource allocation, power management, and the latest 3GPP standards supporting M2M communications. Acknowledging the fact that a single technology can not support all M2M applications, we discuss RRM issues for unlicensed band radio access technologies in M2M capillary networks, including IEEE 802.11ah, Bluetooth low energy, ZigBee, and smart metering networks. We also survey M2M RRM methods in heterogeneous networks consisting of cellular networks, capillary networks, and ultra dense networks. Finally, we review recent standard activities and discuss the open issues and research challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.