Abstract

ABSTRACTA crystal plasticity model for near‐alpha hcp titanium alloys embodying a quasi‐cleavage failure mechanism is presented and employed to investigate the conditions necessary in order for facet nucleation to occur in cold‐dwell fatigue. A model polycrystal is used to investigate the effects of combinations of crystallographic orientations (and in particular, a rogue grain combination), the essential role of (cold) creep during hold periods in the loading cycle and the more damaging effect of a load hold rather than a strain hold in facet nucleation. Direct comparisons of model predictions are made with dwell fatigue test results. More generally, the crystal model for faceting is found to be consistent with a range of experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.